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Vinylation of aryl N-(2-pyridylsulfonyl) aldimines with versatile 1-alkenyl-1,1-borozinc heterobimetallic reagents is disclosed. In situ hydroboration
of air-stable B(pin)-alkynes followed by chemoselective transmetalation with dimethylzinc and addition to aldimines provides B(pin)-substituted
allylic amines in 53—93% yield in a one-pot procedure. The addition step can be followed by either B—C bond oxidation to provide a-amino
ketones (71—98% yield) or Suzuki cross-coupling to furnish trisubstituted 2-arylated (E)-allylic amines (51—73% yield).

Highly stereoselective construction of C—C double
bonds remains a challenge in organic synthesis." In this
regard, sp> and sp> hybridized heterobimetallic reagents of
type I and II (Scheme 1) are potentially useful intermedi-
ates, because each metal—carbon bond can be chemoselec-
tively exploited in C—C bond forming reactions.>*°
Furthermore, these versatile heterobimetallic reagents
can be employed in tandem reactions, minimizing isolation
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Scheme 1. 1,1-Heterobimetallics in Organic Synthesis
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and purification of intermediates.’ These attributes allow
for rapid development of molecular complexity from
simple building blocks.

As part of our program in developing stereoselective
C—C bond forming reactions.,® we have reported the
generation of 1-alkenyl-1,1-heterobimetallic reagents



based on boron and zinc from readily available, air-stable
B(pin)-substituted alkynes (Scheme 2).”* Thus, regioselec-
tive hydroboration of B(pin)-alkynes generates the 1,1-bis
(boro) intermediates.”*® Chemoselective transmetalation
of the more reactive vinyl-BCy, bond generates 1-alkenyl-
1,1- heterobimetallic reagents. The difference in reactivity
between Zn—C vs B—C bonds allows for selective reaction
at the Zn—C bond with aldehydes to yield B(pin)-substi-
tuted allylic zinc alkoxide intermediates. The alkoxide
intermediates were then employed in various tandem
reactions to form an array of compounds such as B(pin)-
substituted allylic alcohols,”*° a-hydroxy ketones,”® tri-
substituted (E)-allylic alcohols,”® B(pin)-substituted cyclo-
propyl alcohols,”® and B(pin)-substituted allylic acetates.”®

Scheme 2. Generation of 1-Alkenyl-1,1-heterobimetallics of
Boron/Zinc and Additions to Electrophiles
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Herein, we report the addition of alkenyl-1,1- hetero-
bimetallic reagents to N-(2-pyridylsulfonyl) aldimines to
furnish B(pin)-substituted allylic amines (Scheme 2, lower
part). The addition can be followed by oxidation of the
B—C bond to provide a-aminoketones or by Suzuki cross-
coupling to provide densely functionalized trisubstituted
(E)-allylic amines.

Allylic amines’ are important pharmacophores that
can exhibit significant biological properties. Examples
include Acrivastine (Semprex),'® Flunarizine,'' and several
GABA uptake inhibitors.'? As a result, additions to imines
have attracted considerable attention. For example, Wipf
and co-workers reported the addition of vinylzinc reagents
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to aldimines activated with a diphenylphosphinoyl moiety
(Scheme 3)."* Carretero'® and co-workers demonstrated
that the reactivity of N-sulfonyl imines could be increased
in the presence of an appropriately positioned heteroaryl
group. Using this strategy, they developed the alkylation of
aryl N-(2-pyridylsulfonyl) aldimines with organozinc
halides.'* The Carretero and Toru groups both have
utilized the N-pyridylsulfonyl as a novel stereocontrol
element in enantioselective Mannich-type reactions with
silyl enol ethers in the presence of chiral copper catalysts.'”
Various related nucleophilic reagents, such as dialkyl
zine,>'!7 alkynylzinc,>'® diethylaluminium cyanide,"
and Danishefsky’s diene,*” have also been investigated in
imine addition reactions to yield the desired amines.

Scheme 3. Wipf’s Vinylation of Aryl Diphenylphosphinoyl
Imines via Vinylzinc Reagents
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Our first task in the addition of bimetallics to imines was
to find a suitable imine activating group. The bimetallic
reagent was generated and allowed to react with activated
imines at —18 °C (Table 1). N-Tosylimines gave a trace
addition product with our alkenyl heterobimetallic re-
agents (entry 1). Rather, a significant amount of reduction
product was isolated. The N-Boc imine behaved similarly,
failing to furnish the desired amine (entry 2). When the
activating group was changed to diphenylphosphinoyl, less
than 30% of the allylic amine was isolated. Gratifyingly,
the bimetallic addition to N-pyridyl sulfonyl imine oc-
curred smoothly in 73% yield in toluene at —18 °C to
furnish the desired product (entry 4). The addition
was then optimized with the N-pyridyl sulfonyl imines.
Switching the solvent from toluene to dicholoromethane
improved the yields slightly (entry 4 vs 7), while, in
THF, almost no product was formed (entry 5). Dimethylzinc
performed better than diethylzinc (entry 7 vs 9). Increasing
the reaction temperature from —18 to —10 °C led to a
diminished yield (entry 6 vs 7). With the optimized condi-
tions in entry 7, the scope of the reaction was examined.

Aryl aldimines with electron-donating or -withdrawing
groups were good substrates, providing the B(pin)
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Table 1. Optimization of the Addition of Alkenyl-1,
1-heterobimetallics to N-Pyridyl Sulfonyl Imines

n-Bu NR
"o | Rz i Ph)LH "
Il SOUET, nj/\n-Bu ———— Ph” Y “n-Bu
. R"yZn . -18°C )
B(pin) _78°°C B(pin) B(pin)
entry Ry"Zn solvent R yield (%)*

1 MesZn toluene SO5Tol trace
2 MeyZn toluene Boc trace
3 MeyZn toluene P(O)Ph, <30
4 MesZn toluene SO,(2-Py) 73
5 MesZn THF SO.(2-Py) trace
6 MeyZn CH,Cl, S04(2-Py) 68°
7 MeyZn CH,Cl, SO4(2-Py) 80
8 EtyZn toluene SOy(2-Py) 64
9 Et2Zn CH2012 802(2-Py) 65

“Tsolated yields. ® Reaction performed at —10 °C.

Table 2. Addition of Alkenyl-1,1-hetrobimetallics to N-Pyridyl
Sulfonyl Imines

entry borane imine allylic amines yield (%)
n-Bu llxjsoz(z-Py) NHSO,(2-Py)
1 || @) ©)Y\H_Bu1a 80
B(pin) Blpim
Ph II\ISOZ(Z—Py) NHSO,(2-Py)
2 || ©) A~pn b 68
B(pin) Blpin)
n-Bu II\ISOZ(Z-Py) NHSO,(2-Py)
A e
) B(pin)
B(pin) MeOQ MeO
Ph II\1802(2-Py) NHSO,(2-Py)
4 || /@2 A P 1d 93
) B(pin)
B(pin) MeO MeO
t-Bu II\ISOZ(Z—Py) NHSO,(2-Py)
Al eamtiL
B(pin) MeO MeO B(pin)
n-Bu II\ISOZ(Z-Py) NHSO,(2-Py)
6 || # p-Bu 1f 70
Bioin)  F F Bl
n-Bu OMe wsoz(z_Py) OMe NHSO,(2-Py) 19 53
7 || Z “p-Bu
B(pin) B(pin)
“Tsolated yields.

substituted allylic amines in 53—93% yield (Table 2).
The air-stable B(pin)-substituted alkynes can contain
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aromatic or aliphatic substituents (R = aryl, alkyl). Even
the bulky tert-butyl-substituted B(pin) alkyne underwent
addition to generate the corresponding allylic amine
in 60% yield (entry 5). Substitution at the ortho position
of the aldimine resulted in a slightly lower yield (entry 7 vs
3-9).

Having established vinylation of aldimines with our
heterobimetallics, we sought to examine tandem reactions
involving the B—C bond. Two such reactions are B—C
bond oxidation and Suzuki cross-coupling.

We envisioned that oxidation of the 2-B(pin)-substituted
allylic amines would provide access to valuable a-amino
ketones, which have important biological activity.?' In the
presence of NaBO; - H,0??in THF/H,O (1:1) at rt, B(pin)-
substituted allylic amines were smoothly oxidized to the
corresponding a-amino ketones in 71—98% yield (Table 3).

Table 3. Oxidation of Allylic Amines to a-Amino Ketones

NHSO,(2-Py) NaBO3 H,0 NHSO,(2-Py)
(3 equiv)

R’ Z "R YT L, R R
B(pin) THF/H,0 (1:1) S

entry _ allylic amines amino ketones yield (%)?
NHSO,(2-Py)
1 1a n-Bu 2a 80
0]
NHSO,(2-Py)
2 1b mph 2b 75
(0]
NHSO,(2-Py)
3 1c mn-gu 2 96
MeO ©
NHSO,(2-Py)
4 1d mph 2d 98
MeO ©
NHSO,(2-Py)
5 1e mt—Bu 2e 87
MeO ©
NHSO,(2-Py)
6 1 m\n-Bu 2f 71
F o}
OMe NHSO,(2-Py)
7 19 By 29 87

5

“Isolated yields.
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Scheme 4. Tandem Addition/B—C Bond Oxidation To Yield
a-Amino Ketone 2a
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The addition/oxidation reaction can also be executed in a
tandem fashion. Thus, after completion of the bimetallic
addition to the aldimine, the reaction mixture was sub-
jected to NaBO5+-H,»O to provide the a-amino ketone in
68% yield in one pot (Scheme 4).

We next utilized the B—C bond in Suzuki cross-coupling
reactions. In the presence of Pd(OAc), (15 mol %), PPh;
(30 mol %), Cs,COs5 (3 equiv), and aryl bromide (3 equiv)
in THF/H,O (10:1) at 75 °C, the B(pin)-substituted allylic
amines smoothly underwent cross-coupling to furnish the
2-arylated trisubstituted (FE)-allylic amines in 51—73%
yield (Scheme 5). No (Z)-double bond isomers were ob-
served in these reactions.

Although the 2-pyridyl sulfonyl group is essential for the
addition step, its removal is important for applications of
the products. The 2-pyridyl sulfonyl group was readily
cleaved on treatment of 1a with magnesium in MeOH to
liberate the free amine 4 (Scheme 6).%*%* The free amine 4
was then transformed into its Boc-derivative 5 on treat-
ment with Boc,O at rt in 88% overall yield (Scheme 6).

In summary, the nucleophilic addition of 1-alkenyl-1,1-
borozinc heterobimetallic reagents to aryl N-(2-pyridyl-
sulfonyl) aldimines has been developed. This protocol
provides a variety of B(pin)-substituted allylic amines in
good yields. The addition step can be followed by a tandem
oxidative cleavage of the B—C bond to furnish valuable
o-amino ketones or by Suzuki cross-coupling to form
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Scheme 5. Suzuki Cross-Coupling of Allylic Amines
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Scheme 6. Removal of the 2-Pyridyl Sulfonyl Group followed by
Boc-Protection

NHSO,(2-Py) NH, NHBoc
Ph)\/\n-Bu—>'\/|g/'\/lteOH Ph)\/\n—Bu —»BOCZO Ph Z “n-Bu
Ph ' Ph C?C'Q Ph

5
3a 4 88% yield

2-arylated trisubstituted ( E£)-allylic amines. It is noteworthy
that 2-arylated trisubstituted (E)-allylic amines are not
currently accessible via the Tsuji—Trost reaction, because
2-arylated allylic acetates are not good substrates for the
allylic substitution reaction.”® Given that amino ketones
and allylic amines are important pharmacophores,'®~'%?!
we anticipate that the methods described herein will be
useful to the synthetic community.
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